Saturday, December 22, 2007

Optic Fibre Communication

Optical fiber communication
Main article: Fiber-optic communication
Optical fiber can be used as a medium for telecommunication and networking because it is flexible and can be bundled as cables. It is especially advantageous for long-distance communications, because light propagates through the fiber with little attenuation compared to electrical cables. This allows long distances to be spanned with few repeaters. Additionally, the light signals propagating in the fiber can be modulated at rates as high as 40 Gb/s [3], and each fiber can carry many independent channels, each by a different wavelength of light (wavelength-division multiplexing). Over short distances, such as networking within a building, fiber saves space in cable ducts because a single fiber can carry much more data than a single electrical cable. Fiber is also immune to electrical interference, which prevents cross-talk between signals in different cables and pickup of environmental noise. Also, wiretapping is more difficult compared to electrical connections, and there are concentric dual core fibers that are said to be tap-proof. Because they are non-electrical, fiber cables can bridge very high electrical potential differences and can be used in environments where explosive fumes are present, without danger of ignition.
Although fibers can be made out of transparent plastic, glass, or a combination of the two, the fibers used in long-distance telecommunications applications are always glass, because of the lower optical attenuation. Both multi-mode and single-mode fibers are used in communications, with multi-mode fiber used mostly for short distances (up to 500 m), and single-mode fiber used for longer distance links. Because of the tighter tolerances required to couple light into and between single-mode fibers (core diameter about 10 micrometers), single-mode transmitters, receivers, amplifiers and other components are generally more expensive than multi-mode components.
Fiber optic sensors
Optical fibers can be used as sensors to measure strain, temperature, pressure and other parameters. The small size and the fact that no electrical power is needed at the remote location gives the fiber optic sensor advantages to conventional electrical sensor in certain applications.
Optical fibers are used as hydrophones for seismic or SONAR applications. Hydrophone systems with more than 100 sensors per fiber cable have been developed. Hydrophone sensor systems are used by the oil industry as well as a few countries' navies. Both bottom mounted hydrophone arrays and towed streamer systems are in use. The German company Sennheiser developed a microphone working with a laser and optical fibers[4].
Optical fiber sensors for temperature and pressure have been developed for downhole measurement in oil wells. The fiber optic sensor is well suited for this environment as it is functioning at temperatures too high for semiconductor sensors (Distributed Temperature Sensing).
Another use of the optical fiber as a sensor is the optical gyroscope which is in use in the Boeing 767 and in some car models (for navigation purposes) and the use in Hydrogen microsensors.
Fiber-optic sensors have been developed to measure co-located temperature and strain simultaneously with very high accuracy[5]. This is particularly useful to acquire information from small complex structures.
Other uses of optical fibers


A frisbee illuminated by fiber optics
Fibers are widely used in illumination applications. They are used as light guides in medical and other applications where bright light needs to be shone on a target without a clear line-of-sight path. In some buildings, optical fibers are used to route sunlight from the roof to other parts of the building (see non-imaging optics). Optical fiber illumination is also used for decorative applications, including signs, art, and artificial Christmas trees. Swarovski boutiques use optical fibers to illuminate their crystal showcases from many different angles while only employing one light source. Optical fiber is an intrinsic part of the light-transmitting concrete building product, LiTraCon.
Decision Support Systems – DSS (definition)
Decision Support Systems (DSS) are a specific class of computerized information system that supports business and organizational decision-making activities. A properly designed DSS is an interactive software-based system intended to help decision makers compile useful information from raw data, documents, personal knowledge, and/or business models to identify and solve problems and make decisions.
Typical information that a decision support application might gather and present would be:
Accessing all of your current information assets, including legacy and relational data sources, cubes, data warehouses, and data marts
Comparative sales figures between one week and the next
Projected revenue figures based on new product sales assumptions
The consequences of different decision alternatives, given past experience in a context that is described
Information Builders' WebFOCUS reporting software is ideally suited for building decision support systems due to its wide reach of data, interactive facilities, ad hoc reporting capabilities, quick development times, and simple Web-based deployment.
The best decision support systems include high-level summary reports or charts and allow the user to drill down for more detailed information.

Monday, December 17, 2007

Fibre Optic

Fiber-optic communication is a method of transmitting information from one place to another by sending light through an optical fiber. The light forms an electromagnetic carrier wave that is modulated to carry information. First developed in the 1970s, fiber-optic communication systems have revolutionized the telecommunications industry and played a major role in the advent of the Information Age.

It has become so popular in communication these days because of the following advantages.

Immunity to Electromagnetic Interference

Electromagnetic Interference is a common type of noise that originates with one of the basic properties of electromagnetism. Magnetic field lines generate an electrical current as they cut across conductors. The flow of electrons in a conductor generates a magnetic field that changes with the current flow. Electromagnetic Interference does occur in coaxial cables, since current does cut across the conductor. Fiber optics are immune to this EMI since signals are transmitted as light instead of current. Thus, they can carry signals through places where EMI would block transmission.

Data Security

Magnetic fields and current induction work in two ways. They don't just generate noise in signal carrying conductors; they also let the information on the conductor to be leaked out. Fluctuations in the induced magnetic field outside a conductor carry the same information as the current passing through the conductor. Shielding the wire, as in coaxial cables can reduce the problem, but sometimes shielding can allow enough signal leak to allow tapping, which is exactly what we wouldn't want.
There are no radiated magnetic fields around optical fibers; the electromagnetic fields are confined within the fiber. That makes it impossible to tap the signal being transmitted through a fiber without cutting into the fiber. Since fiber optics do not radiate electromagnetic energy, emissions cannot be intercepted and physically tapping the fiber takes great skill to do undetected. Thus, the fiber is the most secure medium available for carrying sensitive data.

Non Conductive Cables

Metal cables can encounter other signal transmission problems because of subtle variations in electrical potential. A serious concern with outdoor cables in certain computer networks is that they can be hit by lightning, causing destruction to wires and other cables that are involved in the network
Any conductive cables can carry power surges or ground loops. Fiber optic cables can be made non-conductive by avoiding metal in their design. These kinds of cables are economical and standard for many indoor applications. Outdoor versions are more expensive since they require special strength members, but they can still be valuable in eliminating ground loops and protecting electronic equipment from surge damage.

Eliminating Spark Hazards

In some cases, transmitting signals electrically can be extremely dangerous. Most electric potentials create small sparks. The sparks ordinarily pose no danger, but can be really bad in a chemical plant or oil refinery where the air is contaminated with potentially explosive vapours. One tiny spark can create a big explosion. potential spark hazards seriously hinder data and communication in such facilities. Fiber optic cables do not produce sparks since they do not carry current.

Ease Of Installation

Increasing transmission capacity of wire cables generally makes them thicker and more rigid. Such thick cables can be difficult to install in existing buildings where they must go through walls and cable ducts. Fiber cables are easier to install since they are smaller and more flexible. They can also run along the same routes as electric cables without picking up excessive noise.
One way to simplify installation in existing buildings is to run cables through ventilation ducts. However, fire codes require that such plenum cables be made of costly fire retardant materials that emit little smoke. The advantage of fiber types is that they are smaller and hence require less of the costly fire retardant materials. The small size, lightweight and flexibility of fiber optic cables also make them easier to be used in temporary or portable installations.

High Bandwidth Over Long Distances

Fiber optics have a large capacity to carry high speed signals over longer distances without repeaters than other types of cables. The information carrying capacity increases with frequency. This however, doesn't mean that optical fiber has infinit bandwidth, but it's certainly greater than coaxial cables. This is an important factor that leads to the choice of fiber for data communications. Fiber can be added to a wire network so it can reach terminals outside its normal range.